SUMIN PARK
SUMIN PARK

Interested in Geometric Deep Neural Networks and Their Phyiscal Applications

Contact me

2024 © SUMIN PARK

  • ALL (180)
  • PAPERS
    Convolutional Neural Networks (6) Transformer (3) Optimization (2) Representation (1) Object Detection (5) Generative Models (1) Graph Neural Networks (10)
  • DL
    Deep Learning Specialization (6) cs231n (Stanford) (7) Signals & Systems (9)
  • ML
    CS229 (4) Optimization (9) Information Theory (1) Reinforcement Learning (1) Spectral Graph Theory (1)
  • PHYSICS
    Classical Mechanics (1) Special Relativity (1) Electromagnetism (1)
  • PYTHON
    Algorithms (22) Crawling (3)
  • MATH
    Vector Calculus (5) Linear Algebra (29) Multivariate Calculus (11) Tensor Calculus (1) Differential Equation (1) Differential Geometry (2) Matlab (2)
  • STATISTICS
    Various Topics (14) Statistics for Application (MIT 18.650) (4)
  • DATA-ENGINEERING
    Hadoop Ecosystem(5)
  • PSM
    CV (1)
  • SEARCH
  • TAGS

[Stanford CS229 04] Generative Leaning - GDA & Naive Bayes

OUTLINES Generative Learning Algorithms GDA Naive Bayes 1. Generative Learning Algorithms Generative Learning Algorithm model...

2023, Mar 07   —  5 minute read

[Stanford CS229 03] Generalized Linear Model (GLM) and Softmax Regression

OUTLINES Exponential Family Generalized Linear Models Softmax Regression (Multiclass Classification) 1. Exponential Family Distribution is...

2023, Mar 05   —  4 minute read

[Stanford CS229 02] Locally Weighted Regression and Logistic Regression

OUTLINES Locally Weighted Regression Probabilistic Interpretation (Maximum Log Likelihood) Logistic Regression Newton’s method 1. Locally...

2023, Feb 24   —  5 minute read

[Stanford CS229 01] Linear Regression and Gradient Descent

OUTLINES MULTIVARIATE LINEAR REGRESSION BATCH/ STOCHASTIC GRADIENT DESCENT NORMAL EQUATION 1. Multivariate Linear Regression 1.1....

2023, Feb 17   —  5 minute read